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Optical metasurfaces (OMs) offer unprecedented control over electromagnetic waves, enabling advanced optical
multiplexing. The emergence of deep learning has opened new avenues for designing OMs. However, existing
deep learning methods for OMs primarily focus on forward design, which limits their design capabilities, lacks
global optimization, and relies on prior knowledge. Additionally, most OMs are static, with fixed functionalities
once processed. To overcome these limitations, we propose an inverse design deep learning method for dynamic
OMs. Our approach comprises a forward prediction network and an inverse retrieval network. The forward pre-
diction network establishes a mapping between meta-unit structure parameters and reflectance spectra. The in-
verse retrieval network generates a library of meta-unit structure parameters based on target requirements,
enabling end-to-end design of OMs. By incorporating the dynamic tunability of the phase change material
Sb2Te3 with inverse design deep learning, we achieve the design and verification of dynamic multifunctional
OMs. Our results demonstrate OMs with multiple information channels and encryption capabilities that can
realize multiple physical field optical modulation functions. When Sb2Te3 is in the amorphous state, near-field
nano-printing based on meta-unit amplitude modulation is achieved for X -polarized incident light, while holo-
graphic imaging based on meta-unit phase modulation is realized for circularly polarized light. In the crystalline
state, the encrypted information remains secure even with the correct polarization input, achieving double
encryption. This research points towards ultra-compact, high-capacity, and highly secure information storage
approaches. © 2023 Chinese Laser Press

https://doi.org/10.1364/PRJ.505991

1. INTRODUCTION

Optical metasurfaces (OMs) are two-dimensional structures
composed of subwavelength meta-units, offering unique capabil-
ities for manipulating optical wavefronts and enabling applica-
tions such as high-density optical storage and holography
[1–3]. Unlike bulk metamaterials, OMs provide subwavelength
resolution control over optical properties like amplitude, phase,
polarization, and orbital angular momentum (OAM) [4–6].
Their arbitrary wavefront shaping capabilities have been exten-
sively studied for imaging [7,8], holography [9–11], and nano-
printing [12–14] applications, leading to the development of
novel optical equipment such as focusing metalenses [15–17]
and surface plasmonic coupling [6,18,19]. However, traditional
OM design methods suffer from fixed functionalities and lack
the ability to dynamically adjust, limiting their practical applica-
tions. To address this, embedding phase change materials

(PCMs) in OMs has emerged as an approach to achieve dynamic
functionality. PCMs are widely applied in the research field of
“dynamic” OMs [20–24].

PCMs play a crucial role in the development of emerging
non-volatile erasable optical storage technology [25–27].
Recent studies have demonstrated that PCMs are excellent ac-
tive materials for achieving dynamic optical metasurfaces
[21,28–30]. PCMs offer distinct advantages compared to other
similar materials, as they exhibit significant changes in the op-
tical refractive index between their crystalline and amorphous
states. These unique properties include an exceptionally fast
reversible switching speed in the nanosecond range and
a phase change cycle lifetime of up to 1015 cycles [31].
“Dynamic” effects are mainly manifested by the aforemen-
tioned properties. Leveraging these remarkable characteristics,
PCMs have shown great potential in various applications
within the field of OMs, such as beam steering [32,33], optical
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switches [34,35], optical computing [36,37], and photon spin–
orbit interaction [38,39]. Among the typical PCMs, Sb-Te-
based alloys have found widespread use in OMs research
[22,40,41]. Specifically, Sb2Te3, owing to its growth-domi-
nated crystallization and low melting point, offers a faster
and less energy-intensive phase transition cycle compared to
GST225 (Ge2Sb2Te5), a typical PCM [42]. These advanta-
geous properties of Sb2Te3 provide a solid foundation for its
application in the field of OMs.

Deep learning, utilizing artificial neural networks (ANNs),
is a remarkable methodology to effectively handle vast and
complex data in OMs research [43–45]. Wei et al. proposed
an iterative gradient optimization method based on machine
learning, achieving excellent results in optical multiplexing
for OMs holography [46]. Ma et al. demonstrated the accurate
prediction of spectra and colors of OMs using deep learning
neural networks [47]. However, it is worth noting that many
studies, including these examples, have predominantly focused
on forward modeling research of OMs [48–50]. In contrast,
inverse design, which originated from the fluid dynamics com-
munity [51], offers valuable insights for addressing challenges
like tuning dynamic degrees of freedom in OMs. Unlike tradi-
tional inverse design methods, deep learning network models
can dynamically learn the intricate connections between meta-
units and their corresponding optical responses from a training
dataset in the design space. This adaptability enables the explo-
ration of complex and multifunctional OMs. Furthermore, the
combination of deep learning with genetic [52,53] and optimi-
zation algorithms [54,55] holds significant potential for
enhancing the design process of such intricate and versatile
OMs. In recent research, the application of inverse design deep

learning has shown successful outcomes in the investigation of
optical metalenses [56,57]. Nevertheless, it is noteworthy that
the deep learning network architecture employed in these stud-
ies is fundamentally a forward network model, rather than an
inverse neural network model. Additionally, these studies pri-
marily focus on the design of a single parameter, which is in-
sufficient for the comprehensive exploration of OMs with
multiple parameters. In light of the rapid advancement of ar-
tificial intelligence (AI), the investigation of multifunctional
OMs possessing multiple degrees of freedom has become an
indispensable endeavor.

In this work, we propose a novel scheme for dynamic OMs
using Sb2Te3 to achieve optical information. Deep learning
serves as a mediator between the structural parameters of
the meta-units and the desired functionalities of the OMs.
Our approach, consisting of forward prediction and inverse
retrieval networks, leverages deep learning and angular spec-
trum iterative optimization algorithms to accurately capture
and reconstruct the statistical features of the multidimensional
joint distribution between the meta-unit structures and their
optical responses. This approach provides valuable insights into
the design of multifunctional OMs.

2. DESIGN AND ALGORITHM

A. Design Principles of Multifunctional OMs
Figure 1 illustrates the method of using structured Sb2Te3
OMs for optical data encryption. In this approach, three dis-
tinct patterns are stored in three separate channels, each com-
prising individual meta-units of varying sizes and rotation
angles. This fundamentally differs from existing functional

Fig. 1. Illustration of multifunctional OMs and the material optical properties. (a) Scheme of structured Sb2Te3 OMs for optical data encryption.
(b) Structure design and related parameters of meta-unit. The periods Px and Py of meta-cell are 300 nm. The MIM layers’ thicknesses h1, h2, and h3
are 30, 90, and 130 nm, respectively. (c) Distribution of the propagation phase with the size of meta-unit. (d) Distribution of PB phases with the
rotation angle of meta-unit. (e), (f ) Refractive index n and extinction coefficient k of Sb2Te3 in (e) amorphous and (f ) crystalline states [58].

124 Vol. 12, No. 1 / January 2024 / Photonics Research Research Article



OMs [59–61]. Each meta-unit serves as the fundamental
working unit and contributes to the wavefront control of emitted
light. Furthermore, unlike other design strategies involving ultra-
compact solutions [62] or multi-layer design strategies [63,64]
that require multiple wavefront manipulations, this proposed ap-
proach achieves active modulation of light’s amplitude and phase
using a single subwavelength-sized meta-unit. This enables inde-
pendent functionalities and overcomes limitations such as signal
crosstalk and information loss, resulting in an exceptionally
high information storage density. Moreover, the dynamic tuna-
bility of Sb2Te3 allows for polymorphic, ultra-fast, reliable, non-
volatile, and reversible optical information processing operations.
Figure 1(a) demonstrates the encoding of information related to
Wuhan University in the three separate channels. When the in-
cident light’s polarization state changes, the Sb2Te3 OMs modu-
late the light with different polarizations, revealing distinct stored
information. Specifically, when the polarization of incident light
is X -direction linearly polarized (LP), the “WHU” abbreviation
becomes visible. A nano-printing process is employed in the near
field, while the line patterns of the old library and the famous
cherry blossoms of Wuhan University are encrypted in left-
handed circular polarization (LCP) and right-handed circular
polarization (RCP) in the far field, respectively.

The proposed multifunctional OMs are achieved by con-
trolling the amplitude, phase, and polarization of reflected light
through meta-units, as depicted in Fig. 1(b). The structural
parameters of the meta-units, denoted by the parametric array
D � �L,W , θ�, are illustrated. The periods for the X - and
Y -directions (Px and Py) are set to 300 nm. The meta-unit
incorporates a metal–insulator–metal (MIM) plasmonic reso-
nator, which enhances the optical response and enables precise
phase control by adjusting the resonance conditions [65]. The
thicknesses ofMIM layers h1, h2, and h3 are 30, 90, and 130 nm,
respectively. The top resonator is designed as a coupled rectan-
gular resonator. As shown in Fig. 1(b), each cuboid meta-unit
acts as a half-wave plate capable of altering the polarization di-
rection of light. This enables both amplitude modulation,
achieved by controlling the rotation angle of the meta-unit in
the near field following Malus’ law, and phase modulation by
changing the size and rotation angle in the far field. The cubic
unit cell introduces different phase shifts, known as propagation
phase, for orthogonal polarizations along the fast and slow axes.
Figure 1(c) demonstrates the relationship between the size of the
designed meta-units and the propagation phase, ranging from 0
to 2π. The geometric phase, also known as the Pancharatnam–
Berry (PB) phase, is modulated by adjusting the rotation direc-
tion, as depicted in Fig. 1(d). The PB phase variation also spans
2π, enabling phase modulation. Thus, careful design enables
complete wavefront control by manipulating both amplitude
and phase in the spatial domain.

Most OMs are static and fixed in function once fabricated.
However, in the context of AI development, dynamic OMs are
crucial. Sb-Te-based alloys, as typical phase change materials,
are excellent candidates for dynamic OMs. Sb2Te3, in particu-
lar, can rapidly and reproducibly switch between its amorphous
(A-Sb2Te3) and crystalline (C-Sb2Te3) states when specific
temperature or energy thresholds are reached. Figures 1(e)
and 1(f ) illustrate the refractive index n and extinction

coefficient k of Sb2Te3 [58]. Information is stored in the amor-
phous Sb2Te3 structure, which becomes inaccessible when
Sb2Te3 transitions into the crystalline state. In other words,
when Sb2Te3 is in its crystalline state, the information related
toWuhan University remains completely hidden, achieving full
encryption. Consequently, the proposed OMs offer benefits
such as multifunctionality, high security, and information stor-
age capacity, making them applicable to high-density informa-
tion storage, compact image display, information encryption,
and other related applications.

Compared to traditional design methods, deep learning
methods offer several advantages in designing OMs, including
automatic learning capability, flexibility, adaptability, large-scale
design space exploration, accelerated design process, and inte-
gration of experimentation and simulation. In this work, in-
verse design deep learning models are employed for
designing the proposed multifunctional OMs. The inverse de-
sign deep learning network consists of a forward predicting net-
work model and an inverse retrieving network model. The
design process for the multifunctional OMs is illustrated
in Fig. 2.

The design process begins with defining specific design ob-
jectives, such as wavefront manipulation under various input
conditions, as depicted in Fig. 2(a). These design objectives es-
tablish the desired intensity and phase distribution, which de-
termine the desired optical response of each meta-unit. Solving
the inverse problem of finding optimal geometric parameters
for the OMs based on the desired optical response in multi-
polarization scenarios is a challenging task. Additionally, deter-
mining whether a suitable meta-unit structure exists or how to
better approximate the requirements for a fixed optical response
is an even more difficult problem to solve. In Figs. 2(b) and
2(c), a retrieving network model is utilized to diversify the de-
sign of meta-units based on the desired intensity and phase,
creating a meta-unit library for subsequent selection. The re-
trieving network model takes the desired intensity and phase
as input and generates candidate meta-unit structures that
satisfy the requirements. These generated meta-unit structures
are then fed into a predicting network model to generate
corresponding amplitude and phase responses, as shown in
Fig. 2(d). The results of these optical responses are used to
evaluate the design of the multifunctional OMs.

These two models are incorporated into the angular spec-
trum iterative optimization Gerchberg–Saxton (GS) algorithms
to iteratively optimize and obtain the optimal solution. When
integrating the GS algorithm into a deep learning model, the
newly generated phase is mapped to the meta-unit geometry
design. The prediction model calculates the deviation between
the actual reflected spectra and the ideal values to reconstruct
the target image. This deep learning model considers non-ideal
phase retrieval by connecting the design domain and the physi-
cal domain, which is particularly crucial for multifunctional
OM holograms that produce different images under various
illumination conditions. Designing the desired optical response
through meta-unit structure design can be challenging for
many multifunctional OMs. However, the proposed closed-
loop approach utilizes the entire design space to better approach
the desired response and optimize the performance of the OMs.
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B. Deep Learning Models for Inverse Design
To illustrate the inverse design process, we consider a single
meta-unit as an example. The schematic diagram of the inverse
design deep learning models is shown in Fig. 3. In this example,
the information about Wuhan University is encoded using
amorphous Sb2Te3, while the crystalline states are utilized
for encryption purposes. We take into account the reflection
electric field strength I and phase response φ of each meta-unit.

The outputs in the X -direction are represented by (I x , Px), and
the outputs in the Y -direction are represented by (I y, Py). The
design parameters of a meta-unit are expressed in terms of the
parametric array �I ,φ� � f �L,W , θ�, which plays a crucial
role in the entire design space. In Fig. 3(a), each of the three
parameters was sampled independently. The length L and
width W were varied from 20 to 195 nm in 5 nm intervals,
and the rotation angle θ was changed from 0° to 170° in 10°

Fig. 2. Design process for the multifunctional OMs. (a) Proposed multifunctional OMs, (b) retrieving network model, (c) meta-unit library, and
(d) predicting network model. These two deep learning network models are integrated into the GS iterative optimization algorithm, enabling
bidirectional linkage between design objectives and OM geometric parameters.

Fig. 3. Schematic diagram of the deep learning model for a single meta-unit design. (a) The design parameters of the meta-unit and the crystalline
phase organization of Sb2Te3 are amorphous. (b) Predicting model for reflectance spectra and (c) retrieving model of the required intensity and
phase. The forward prediction from design parameters to reflection spectra is fixed, whereas the on-demand inverse design process is characterized by
uncertainty, thus ensuring the multiplicity of design outcomes.
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intervals. A working wavelength of 520 nm is chosen, and the
finite-difference-time-domain (FDTD) method is employed
using the simulation package Ansys Lumerical 2021 R2
FDTD Solutions. Plane waves are used as the light source.
The dielectric function of SiO2 and Au is referenced from
the experimental data of Palik [66] and Johnson and
Christy [67], respectively.

The obtained reflectance spectra are then fed into the for-
ward predicting network model, establishing a one-to-one map-
ping between the reflection spectra and the design parameters
of the meta-unit. On the other hand, the inverse retrieving net-
work model takes the desired intensity and phase as input and
generates a one-to-many set of possible design parameters that
satisfy the target requirements. In this study, a predicting model
for reflectance spectra is proposed, leveraging the distinctive
characteristics of different network architectures to enhance
prediction performance, as depicted in Fig. 3(b).

First, the model incorporates the dense connection residual
deep neural network block (ResBlock) as a crucial component.
This block utilizes a dense connection structure, where the out-
put of each layer is connected to the input of subsequent layers,
facilitating efficient information flow. The residual connection
mechanism allows the model to learn residual (difference) in-
formation by skipping layers, enabling better adaptation to
complex features. This design enables the model to capture
nonlinear relationships and subtle variations in the input
data, thereby improving the accuracy of reflectance spectrum
prediction. Second, convolutional blocks (ConvBlocks) are in-
troduced to further extract features. The convolution opera-
tions effectively capture local patterns and structures in the
input data by applying a series of filters. This process allows
for the effective representation of spatial correlations, enhanc-
ing the model’s ability to capture essential information.
ConvBlocks typically consist of convolutional layers, activation
functions, and pooling layers. The convolutional layers perform
feature extraction, activation functions introduce nonlinearity,
and pooling layers downsample the features. This structure ef-
ficiently reduces feature dimensions while preserving crucial
spatial information, thereby improving the accuracy and ro-
bustness of spectrum prediction. Lastly, gated recurrent unit
blocks (GRUBlocks) are incorporated to capture short-range
and long-range dependencies between adjacent data points
in the spectra. GRUBlocks utilize gate mechanisms such as
resetting and updating gates to better control the flow of

information, allowing for the effective capture of contextual
dependencies in sequential data. Compared to traditional re-
current neural networks, GRUBlocks perform more effectively
in capturing temporal relationships within reflectance spectra.
The detailed configuration of the predicting model is provided
in Table 1. This architecture effectively models the temporal
relationships present in reflectance spectra. The mean squared
error (MSE) function is used to calculate the loss between
the input values and the validation values, which can be
expressed as

Loss � 1

n

Xn

i�1

� ymodel − ypre�
2

, (1)

where n is the sample size of the training set. ymodel is the train-
ing or validating value. ypre is the predicted value. Training loss
was calculated using the Adam optimizer.

A proposed retrieving model aims to establish a one-to-
many mapping between given optical requirements and poten-
tial design parameters, as depicted in Fig. 3(c). To achieve this,
a deep generative model based on an encoder–decoder archi-
tecture is employed, which has demonstrated remarkable effi-
cacy in similar research [68,69]. The encoder–decoder
configuration facilitates the transformation of design parame-
ters into a compressed latent space, enabling efficient represen-
tation and subsequent generation of diverse designs. During the
training process, the encoder network acts as an information
extractor, compressing the design parameters into a lower-di-
mensional latent space. This compression is achieved through
a series of transformations and learned representations. By lev-
eraging the power of neural networks, the encoder captures
complex patterns and relationships within the input design
parameters. To promote the generation of diverse designs, ran-
dom sampling is performed from the resulting latent vectors,
exploring various regions in the latent space. On the other
hand, the decoder network functions as a generator, responsible
for reconstructing the original design parameters from the
sampled latent vectors and the given phase requirements. It
takes the latent vectors and target requirements as inputs
and generates predictions for the design parameters.
Through a series of learned transformations and operations,
the decoder learns to approximate the joint distribution of de-
sign parameters and latent vectors conditioned on the specified
optical requirements. This allows the decoder to generate
multiple design options that satisfy the intensity and phase con-
straints. To ensure the generalization capability of the retrieving
model, a prior distribution on the latent space is imposed dur-
ing training. This prior distribution incorporates prior knowl-
edge or assumptions about the design space, guiding the
decoder to focus on the most plausible regions of the latent
space during generation. The detailed configuration of the re-
trieving model is shown in Table 2.

The Kullback–Leibler (KL) divergence is utilized to measure
the similarity between the reconstruction results and the train-
ing sample distribution, which can be described as

DKL�p∥q� � −
X

x
p�x� log q�x�

p�x� , (2)

Table 1. Detailed Configuration of the Predicting Model

Blocks Layers Size-In Size-Out

ResBlock Input — 3 × 1
ResBlock First linear 3 × 1 512 × 1
ResBlock BasBlock1 512 × 1 1024 × 1
ResBlock BasBlock2 1024 × 1 2048 × 1
ResBlock BasBlock3 2048 × 1 2048 × 1
ResBlock BasBlock4 2048 × 1 1024 × 1
ResBlock BasBlock5 1024 × 1 512 × 1
ResBlock BasBlock6 512 × 1 128 × 1
ConvBlock ResConv1 128 × 1 3 × 128 × 512
ConvBlock ResConv2 3 × 128 × 512 3 × 128 × 64
GRUBlock GRU 3 × 128 × 64 3 × 128
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where p or q is a random variable. x is a random variable value.
p�x� and q�x� denote the probability distribution of x.

3. RESULTS AND DISCUSSION

A. Performance Evaluation of Deep Learning Models
The proposed deep learning model possesses prediction and
retrieval capabilities, allowing it to capture the characteristics
of design parameters and corresponding reflection spectra. It
eliminates the need for empirical human intervention and mit-
igates adverse effects caused by global optimization or specific
device functionalities, enabling the achievement of complex
multifunctional OMs. The rate between the training set and
validation set is 7:3 [70–72]. Figure 4(a) presents the deep
learning dataset, where each meta-unit corresponds to a half-
wave plate. When the incident light is X -polarized, the polari-
zation of the output light is Y -polarized, so the value of I x is
close to zero. The reflection phases Px and Py of each CP both
cover a range of 2π, indicating that the samples meet the design
requirements for phase-modulating multifunctional OMs.

The performance of the proposed deep learning model is
then analyzed. First, the deep learning dataset’s consistency
is evaluated using kernel density estimation (KDE) to compute
mutual information among the training, testing, and validation
datasets. Figure 4(b) demonstrates good consistency in the dis-
tributions of the training set, testing set, and validation set, in-
dicating that the model can reproduce the statistical features of
multidimensional reflectance spectra. Additionally, the correla-
tion of the data is analyzed [Fig. 4(c)], revealing that the three
parameters are uncorrelated, further supporting the model’s
ability to reproduce the statistical characteristics of reflectance
spectra. The forward predicting model is trained using the in-
put datasets. Figure 4(d) illustrates the training results for the
three polarizations, showing that the training errors remain well
below 0.001 as the epoch increases. Although the values are
close to zero, resulting in slightly worse training and validating
results, the loss stabilizes below 0.0005. These results indicate
that the forward predicting model performs well.

To obtain the desired phase distribution for specific multi-
functional OMs, the GS algorithm is combined, and the ob-
tained phase distribution is then input into the retrieving
network model to determine the meta-unit distribution. The

distribution of the training and validation sets is validated in
Fig. 5(a), demonstrating that both sets follow the same distri-
bution. Additionally, to evaluate the performance of the retriev-
ing network, 20 samples are randomly selected. Figure 5(b)
displays scatterplots showing a good match among the real, pre-
dicted, and generated values for these 20 samples. To provide a
more precise assessment of the retrieving network model’s ef-
fectiveness, the values are quantitatively analyzed using Pearson
correlations, as shown in Fig. 5(c). The symbol “*” indicates a
highly significant correlation between the two variables. It can
be observed that there is a strong correlation among the real,
predicted, and generated values for each polarization state,
demonstrating the reliability of our model. Moreover, the data
for each polarization state are not correlated with each other,
further supporting the feasibility and rationalization of our
three independent channels for multifunctional OMs.

The reconstruction performance of the retrieval network is
assessed using three sample images of size 100 × 100 pixels. The
retrieval network effectively regenerates the intensity and phase
information of the target pattern and combines them to gen-
erate a reconstructed pattern, as depicted in Fig. 6. The recon-
structed intensity and phase map closely resemble the target
phase and pattern, providing further evidence of the reliability
of our deep learning models.

B. Nano-printing and Holography of Multifunctional
Dynamic OMs
By manipulating the state transition of Sb2Te3, we can achieve
dynamic multifunctional OMs suitable for nano-printing and
holographic imaging. In this study, we have developed a multi-
functional OM device designed to operate at a wavelength
of 520 nm, supporting various polarizations, including LP
in the X -direction (X ), LCP, and RCP. The OMs consist
of 100 × 100 pixels, covering a total area of 31.2 μm ×
31.2 μm. The simulation results presented in Fig. 7 were ob-
tained using Lumerical FDTD Solutions simulation, and
holography was calculated using the Fraunhofer diffraction in-
tegral. The intensity of the image across the three channels is
normalized [31]. As depicted in Fig. 7, when the Sb2Te3 state is
in the amorphous phase, we observe one near-field nano-print-
ing image and two far-field holograms in three distinct emitting
light channels. Specifically, when the incident light is linearly
polarized in the X -direction, the abbreviation “WHU” (repre-
senting Wuhan University) is printed in the near field through
amplitude modulation of meta-units. Under LCP and RCP, the
far-field holograms display line patterns from an old library and
the famous cherry blossoms of Wuhan University, respectively,
achieved through phase modulation of meta-units. It is impor-
tant to note that the encoded information in all three channels
is polarization-dependent and can only be decrypted under
specific polarization conditions. When the state of Sb2Te3 tran-
sitions to the crystalline, even with the correct decoding infor-
mation inputted, the encoded information remains invisible,
providing double the information encryption. The figure
clearly illustrates that under the amorphous state, the simula-
tion results closely match the original target images, demon-
strating the feasibility of our proposed design approach.

The results of nano-printing and holograms using dynamic
multifunctional OMs demonstrate the excellent capabilities of

Table 2. Detailed Configuration of the Retrieving Model

Blocks Layers Size-In Size-Out

Encoder Input �3� 6� × 1 1000 × 1
Encoder First linear 1000 × 1 1000 × 1
Encoder Second linear 1000 × 1 800 × 1
Encoder Third linear 800 × 1 400 × 1
Encoder Fourth linear 400 × 1 200 × 1
Encoder Fifth linear 200 × 1 128 × 1
Encoder Output 128 × 1 �9� 9� × 1
Decoder Input �9� 6� × 1 128 × 1
Decoder First linear 128 × 1 200 × 1
Decoder Second linear 200 × 1 400 × 1
Decoder Third linear 400 × 1 800 × 1
Decoder Fourth linear 800 × 1 1000 × 1
Decoder Fifth linear 1000 × 1 1000 × 1
Decoder Output 1000 × 1 3 ×1
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the PCM-based Sb2Te3 OMs in achieving full wavefront
modulation in both amplitude and phase domains, offering dy-
namic versatility. This design holds significant potential for
various applications in optical information transmission and
encryption. In addition, the designed dynamic multifunctional
OMs incorporate multiple encryption regimes, enhancing their
security features. The three independent target information
channels embedded within a single OM can only be accessed

under specific polarization conditions, effectively using the de-
coded polarization state as a security key. Additionally, the state
transition of the PCM can be utilized for information encryp-
tion. When optical information is encoded in one state of the
PCM, it becomes inaccessible in another state. Hence, our pro-
posed dynamic multifunctional OMs provide a multi-mecha-
nism approach to information encryption, significantly
augmenting the security of stored information.

Fig. 4. Training results of the forward predicting network model. (a) Datasets for the forward deep learning network. The total data quantity of
each cuboid is 23,328. (b) Distribution of datasets. (c) Correlation analysis of parameters. (d) Training and validation loss of X polarization, LCP,
and RCP at wavelength of 520 nm.
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C. Discussion
This study proposes a design methodology for dynamic multi-
functional OMs using inverse design deep learning, showcasing
its effectiveness through simulations. The dynamism of the
OMs is achieved by manipulating the state of Sb2Te3.
When Sb2Te3 is in the amorphous state, the encrypted
information can be accessed with the correct key. However,
in the crystalline state, even with the correct key, the stored

information remains inaccessible. Alternatively, manipulating
the ratio between crystalline and amorphous states of PCMs
can yield a more pronounced and visually captivating dynamic
effect. For example, the display states of the nano-printing and
hologram can be controlled by adjusting the crystallization level
of the PCM, such as setting the crystallinity levels to 0%, 50%,
and 100%. This approach also enhances multichannel multi-
plexing in multifunctional OMs. Importantly, the proposed de-
sign methodology is not limited to Sb2Te3 and can be applied
to other materials with different control mechanisms to achieve
dynamic effects. Additionally, the proposed multichannel OMs
can enhance information encryption by incorporating different
wavelengths, polarizations, and other parameters.

The deep learning network model employed in this research
serves as a generalized design approach, not restricted to the
type of meta-unit discussed in this paper. By adjusting the
model of the meta-unit, the design of other multifunctional
OMs such as metalenses and Pancharatnam–Berry (PB)
OMs can be realized. Moreover, apart from the non-gradient
optimization GS phase retrieval algorithm, the proposed deep
learning network models can be flexibly combined with various
algorithms, including gradient-based optimization algorithms
and other non-gradient iterative optimization algorithms.
Furthermore, the paper utilizes X -direction linear polarization
as a primary focus, yet it is worth noting that linear polarization
in alternative directions can also be employed. For instance,
linear polarization with a specific tilt angle allows for the simul-
taneous presence of non-zero components in both X - and
Y -directions, potentially leading to improved training accuracy.

Fig. 5. Training results of the retrieving model. (a) Distribution of datasets and (b) correspondence among the real, predicted, and generated
values of X polarization, LCP, and RCP. The black plot represents the target values, the red plot represents the predicted values, and the blue plot
represents the generated values. (c) Pearson correlations among the real, predicted, and generated values for each polarization.

Fig. 6. Intensity and phase regeneration results of the retrieving
model. Comparison images among the target phase, target image, re-
constructed phase, and reconstructed image for each polarization state.
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Similarly, the substitution of orthogonal circular polarization
with orthogonal elliptical polarization can yield a comparable
effect.

To demonstrate the feasibility of the proposed approach,
target images with a pixel size of 100 × 100 pixels are selected.
In practical applications, the pattern size can be adjusted ac-
cording to specific requirements. As the size expands, the res-
olution of the regenerated image can be further increased, albeit
at the cost of computational resources and time. In the context
of designing large-sized OMs, several relevant studies have sug-
gested the utilization of image segmentation and integrated
OMs [73–77] as effective approaches for achieving continuous
design of oversized OMs. Consequently, our proposed method
not only caters to the requirements of designing complex OMs
on a large scale but also holds promise for various other appli-
cations, including optical storage, laser fabrication, information
processing, and optical communications. It is important to
note that the quality of the designed target hologram is pri-
marily influenced by the localized surface plasmon resonance
(LSPR) between the meta-units. Unlike single-sized PB
OMs, the impact of LSPR is challenging to eliminate for im-
proving image quality. Nevertheless, the results indicate that
our designed multifunctional OMs can still achieve indepen-
dent multichannel operations.

4. CONCLUSIONS

This work proposes a dynamic multifunctional OMs design
method based on inverse design deep learning. It combines
deep learning with phase change materials (PCMs) to achieve
dynamic nano-printing and holographic imaging of three inde-
pendent polarization channels. The design method consists of a

forward prediction network and an inverse retrieval
network. The forward prediction network establishes a map-
ping between meta-unit design parameters and reflected light
intensity and phase, with training and validation errors below
0.005 in all polarizations. The inverse retrieval network, com-
bined with the angular spectrum iterative GS algorithm, gen-
erates meta-unit structure parameters based on target light
intensity and phase inputs. The effectiveness of the retrieval
network is assessed using the Pearson correlation coefficient,
showing significant correlations with p-values below 0.001
for light intensity and phase in each polarization. The dynamics
of the OMs are achieved through material selection, utilizing
the tunability of Sb2Te3. The designed OMs, generated by in-
verse design deep learning, demonstrate dynamic multifunc-
tionality in FDTD simulations. For example, when Sb2Te3
is amorphous, the OMs display the abbreviation “WHU,” line
patterns of an old library, and cherry blossoms under specific
polarizations. Transitioning to the crystalline state enables in-
formation encryption even with the correct decoding informa-
tion. This embedded inverse design deep learning model
combined with PCM offers a new approach for dynamic multi-
functional OMs. The proposed OMs exhibit multifunctional-
ity, compactness, high information capacity, and security
advantages, making them promising for active OM devices, in-
formation storage, and encryption applications.
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